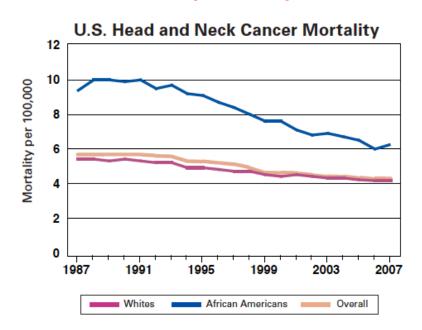


Emerging Drugs to Treat HNSCC: Sensitization of HNSCC to Cisplatin Through the Use of a Novel Curcumin Analog

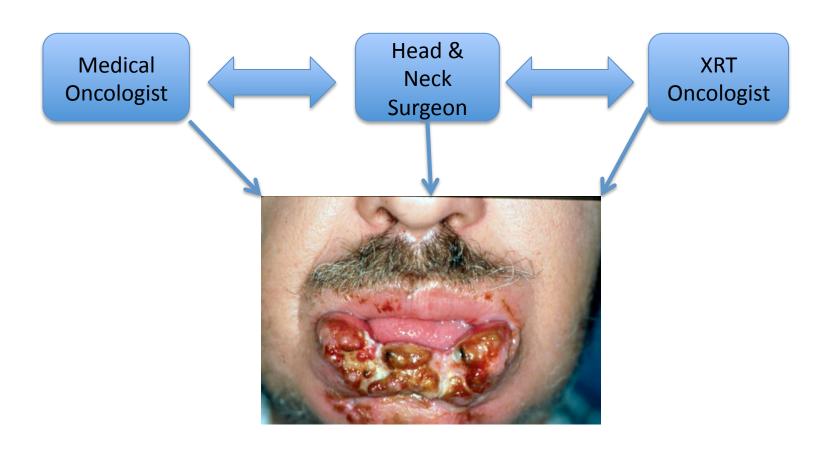

James J. Jaber
University of Pittsburgh-CDC
Wipf Group
November 13, 2011

Presenter Disclaimer:

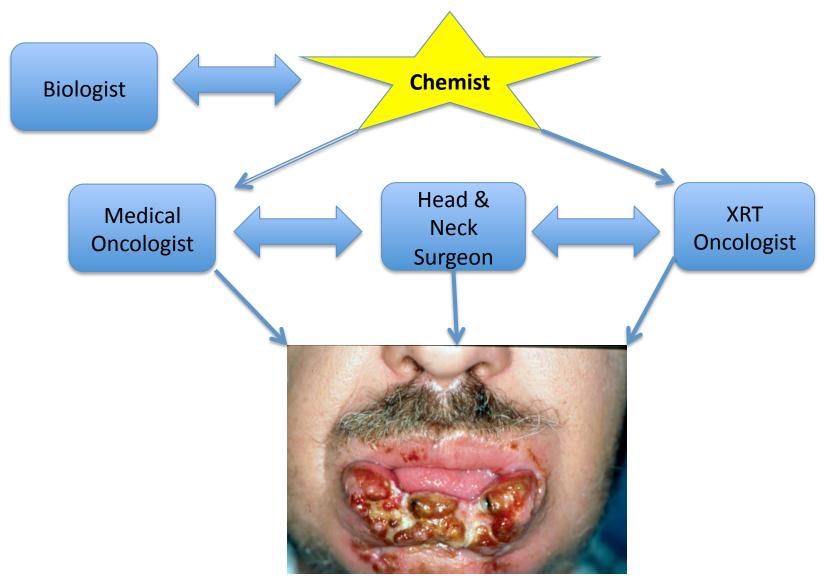
Viewer Discretion is Advised as this Presentation Contains Graphic Photos

Introduction: Squamous Cell Carcinoma (SCC)

- HNSCC is the 8th leading cause of deaths worldwide, 11000 US deaths
- Despite advances in surgery and chem/XRT→ no improvement in survival in last 4 decades
- Current surgery and chemo/ xrt→ very morbid
- Stagnant overall survival had driven the search for novel therapeutic agents

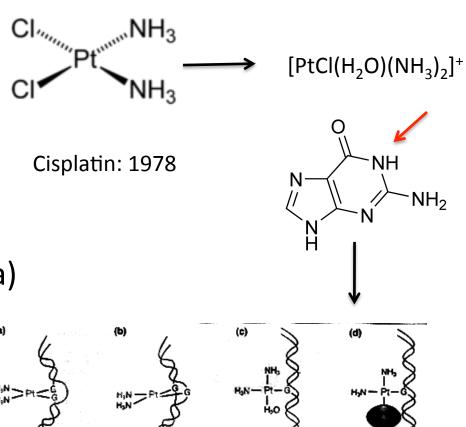

SCC: Two Flavors

- Cutaneous SCC:
 - Sun exposure,
 immunocompromised, fair
 skin, red hair, blue eyes
- Upper aerodigestive SCC:
 - Mucosal lining from lips to below vocal cords
 - Tobacco, EtOH, HPV, 5th-6th decade of life



HNSCC Treatment: Multidisciplinary Approach

HNSCC Treatment: New Multidisciplinary Approach


HNSCC: Role of Chemotherapy

- Chemotherapy: adjuvant therapy with XRT, i.e. not a cure
 - Advanced disease, high risk features, i.e multiple positive lymph nodes, ECS, perineural invasion
- Advantages: simultaneous therapies may synergistically maximize therapeutic effect
 - Chemo sensitizes cells to xrt and can kill micrometastatic disease → distant disease (lungs)
 - Postulated mechanisms:
 - chemo inhibits repair of cells that may recover from XRT before next cycle of XRT
 - Concomitant therapy damage cells in different ways that may otherwise be resistant
- Disadvantages:
 - Increased side effects from concurrent therapy
 - Partial response → 30% of HNSCC only respond

HNSCC Chemotherapy Agents: Alkylating Agents

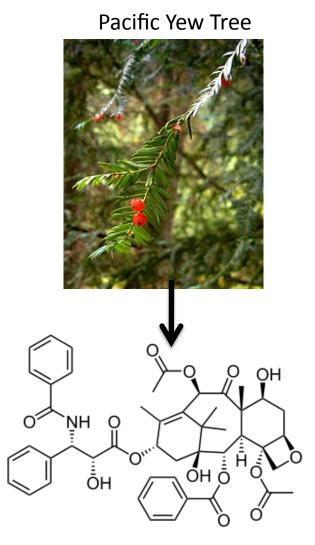
Cisplatin

- Mechanism: intracellular binding bifunctional covalent links that interfere with normal DNA
- Side effects: nephrotoxicity, ototoxicity (SNHL, oscillopsia)
- 15-30% respond
- Carboplatin
 - Analogue of cisplatin
 - Less overall toxicity

DNA crosslinking = cell death

HNSCC Chemotherapy Agents: Antimetabolites

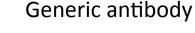
- Methotrexate (MTX)
 - Mechanism: inhibits dihyrdofolate reductase to form folic acid → de novo synthesis of thymidine
 - Side effects:
 immunosuppression,
 hepatic fibrosis
- 5-Flurouracil
 - Mechanism: blocks conversion of uridine into thymidine and synthesis of proteins
 - Side effects: similar to MTX

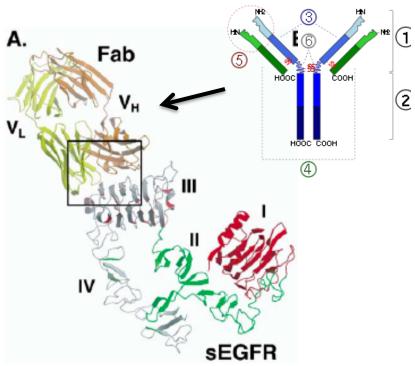

Methotrexate: 1950s

5-FU: 1957

HNSCC Chemotherapy Agents: Microtubule Stabilizers

Paclitaxel


- Awesome history → NCI,Holton, BMS = \$\$\$\$
- Mechanism: stabilizes tubulin and prevent cell division in mitosis
- Recently approved for HNSCC
- Side effects: hair loss, bone pain, immunosuppression, etc



Taxol: 1984

HNSCC Chemotherapy Agents: Epidermal Growth Factor Receptor (EGFR)Inhibitor

- Cetuximab: monoclonal antibody
 - 2006, first FDA molecular targeted therapy for HNSCC
 - Inhibits EGFR: transmembrane glycoprotein, overexpressed in HNSCC
 - Phosphorylation of tyrosine kinase → cell signaling for survival and proliferation
 - Cetuximab + XRT sustained survival of 9% (5-yr OS, 45 vs 36%)

Cetuximab binding to EGFR

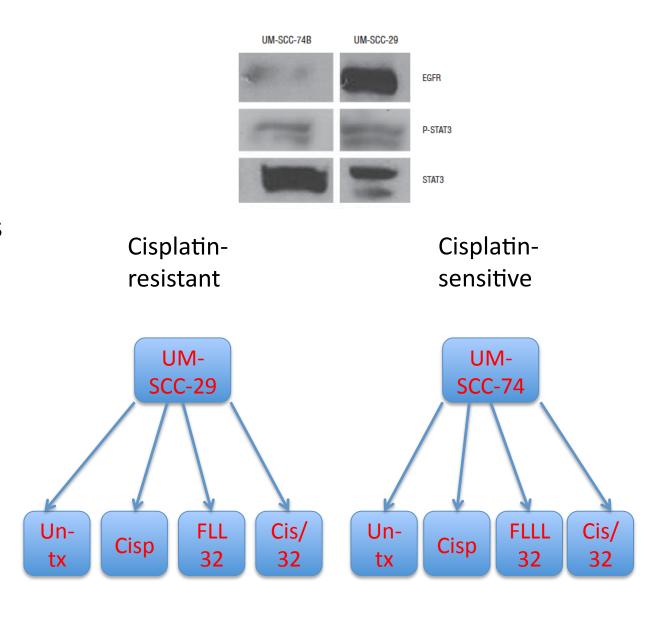
Why Do We Need New Chemotherapy Agents?

- The development of new agents with greater efficacy and tolerability is needed
- Overall survival has been stagnant
- Surgery is morbid (fun for me but not for the patient!)
- Chemotherapy (cisplatin) saved this patient's life!

Sensitization of HNSCC to Cisplatin Through the use of a Novel Curcumin Analog

 Objective: To determine if curcumin analog, FLLL 32 (inhibitor of STAT3?), would induce cytotoxic effects in STAT3-dependent HNSCC and would sensitize tumors to cisplatin

Curcumin: Indian spice tumeric

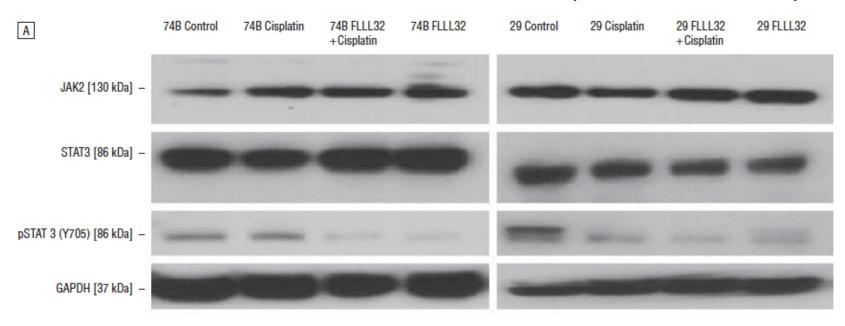

FLLL 32: non-enolizable

<u>Signal Transducer and Activator of</u> <u>Trascription Factor 3 (STAT3)</u>

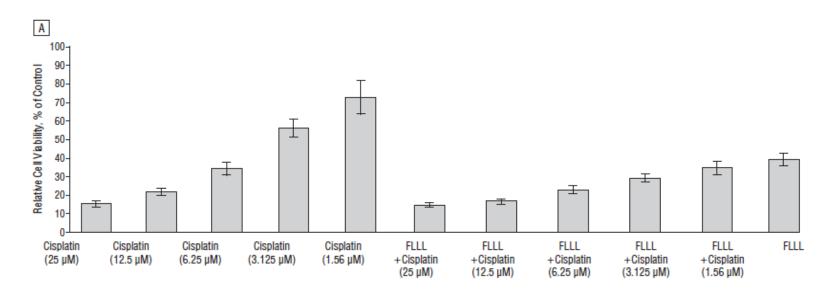
- STAT3: member of a family of transcription factors → regulates expression of many critical genes in tumor growth and survival
- Overexpressed in various cancer cells: leukemia, lymphoma, breast, pancreas, RCC, HCC, prostate, lung etc
- Oncogene: phosphorylated via IL-6 and EGFR
- HNSCC models
 overexpression of pSTAT3 plays a role in cell growth, migration and inhibiting apoptosis
 - May contribute to tumorigenesis and treatment resistance
 - STAT3 expression correlated with cisplatin resistance

Study Design

- Two HNSCC cell lines
 - Cells susceptible to cisplatin (UM-SCC-74B) and cells not (UM-SCC-29)
 - Both cells lines express pSTAT3
- Three arms with 4 concentrations of therapy = 12 groups x 2 cell lines = 24 assays
- One arm: Untreated

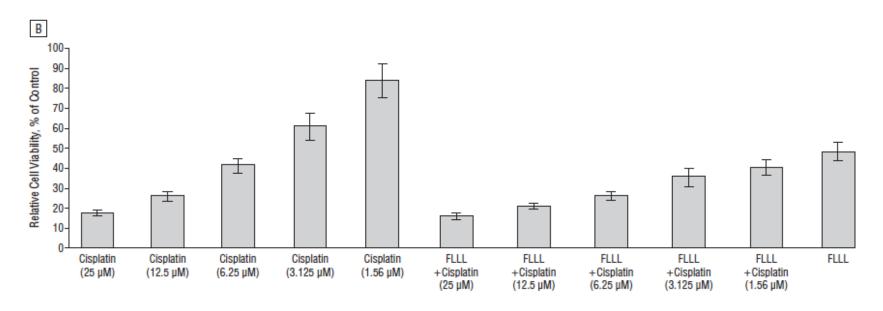


Outcomes Measured

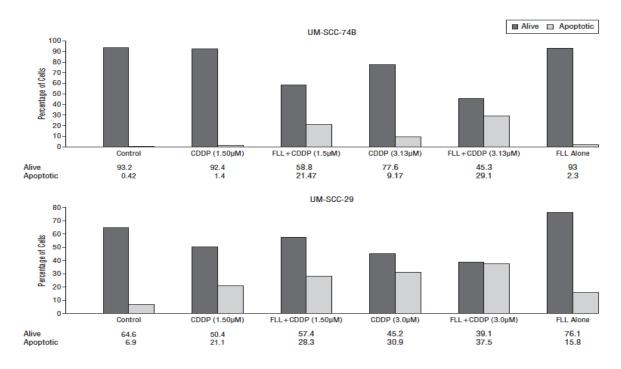

- Primary outcomes:
 - The proportion of of apoptotic cells after cisplatin,
 FLLL 32, and combination therapy
- Secondary outcomes:
 - FLLL 32 treatment on the expression of pSTAT3 and other key proteins in cell apoptosis

Results: pSTAT3 expression

- Western blot analysis:
 - densitometry analysis demonstrated significant down regulation of pSTAT3 protein w cells treated with FLLL 32 vs. untreated and cisplatin alone (P< 0.05).
 - Did not affect total STAT3 or JAK2 (activates STAT3)



Results: Therapy Cytotoxic Effects on Cisplatin Sensitive HNSCC

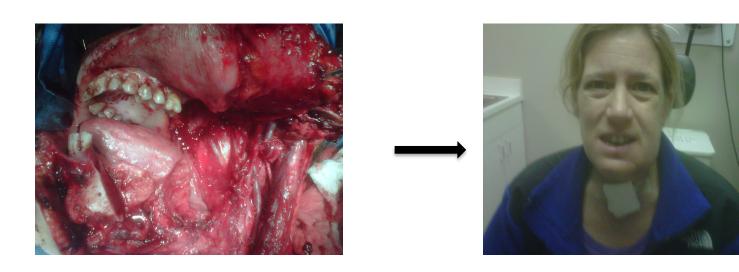

- Cell survival assays
 - In UM-SCC-74B (cisplatin sens), FLLL 32
 potentiates the effects of cisplatin
 - FLLL 32 with cisplatin (1.56 μ M) induced tumor cytotoxic effects = cisplatin @ 6.25 μ m (4x)

Results: Therapy Cytotoxic Effects on Cisplatin Resistant HNSCC

- Cell survival assays
 - In UM-SCC-29 (cisplatin res.), FLLL 32 again potentiates the effects of cisplatin
 - FLLL 32 with cisplatin had a suppressive effect (proliferation) and synergistic cytotoxic effect

Results: FLLL 32 Potentiates Apoptosis in HNSCC

Apoptosis assays


- FLLL 32 alone induced an increase in apoptosis in both cells lines
- Combination therapy induces greater apoptosis than monotherapy alone (do not report stat. sig)

Discussion

- Platinum-based compounds are often used as first-line agents in HNSCC→toxic, not selective
 - Patients relapse with cisplatin-resistant disease
 - Efflux of drug, increased detoxification of drug
- HNSCC has multiple mutations so one therapy does not work for all (caveat: HPV SCC)
- Disruption of STAT3 through FLLL 32 has been shown in vitro to be very effective

Conclusion

- Head and neck cancer drug market is rapidly evolving.
- Coordination between drug and biomarker development efforts may soon yield targeted therapies that can achieve the promise of better personalized cancer medicine

THANK YOU!

Chemists Rule!

